3.7 \(\int \frac{\cos ^2(e+f x) \sqrt{a+a \sin (e+f x)}}{(c-c \sin (e+f x))^{5/2}} \, dx\)

Optimal. Leaf size=97 \[ \frac{a \cos (e+f x) \log (1-\sin (e+f x))}{c^2 f \sqrt{a \sin (e+f x)+a} \sqrt{c-c \sin (e+f x)}}+\frac{\cos (e+f x) \sqrt{a \sin (e+f x)+a}}{c f (c-c \sin (e+f x))^{3/2}} \]

[Out]

(Cos[e + f*x]*Sqrt[a + a*Sin[e + f*x]])/(c*f*(c - c*Sin[e + f*x])^(3/2)) + (a*Cos[e + f*x]*Log[1 - Sin[e + f*x
]])/(c^2*f*Sqrt[a + a*Sin[e + f*x]]*Sqrt[c - c*Sin[e + f*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.430997, antiderivative size = 97, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 5, integrand size = 38, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.132, Rules used = {2841, 2739, 2737, 2667, 31} \[ \frac{a \cos (e+f x) \log (1-\sin (e+f x))}{c^2 f \sqrt{a \sin (e+f x)+a} \sqrt{c-c \sin (e+f x)}}+\frac{\cos (e+f x) \sqrt{a \sin (e+f x)+a}}{c f (c-c \sin (e+f x))^{3/2}} \]

Antiderivative was successfully verified.

[In]

Int[(Cos[e + f*x]^2*Sqrt[a + a*Sin[e + f*x]])/(c - c*Sin[e + f*x])^(5/2),x]

[Out]

(Cos[e + f*x]*Sqrt[a + a*Sin[e + f*x]])/(c*f*(c - c*Sin[e + f*x])^(3/2)) + (a*Cos[e + f*x]*Log[1 - Sin[e + f*x
]])/(c^2*f*Sqrt[a + a*Sin[e + f*x]]*Sqrt[c - c*Sin[e + f*x]])

Rule 2841

Int[cos[(e_.) + (f_.)*(x_)]^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_) + (d_.)*sin[(e_.) + (f_.)*
(x_)])^(n_.), x_Symbol] :> Dist[1/(a^(p/2)*c^(p/2)), Int[(a + b*Sin[e + f*x])^(m + p/2)*(c + d*Sin[e + f*x])^(
n + p/2), x], x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && IntegerQ[p
/2]

Rule 2739

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp
[(-2*b*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m - 1)*(c + d*Sin[e + f*x])^n)/(f*(2*n + 1)), x] - Dist[(b*(2*m - 1)
)/(d*(2*n + 1)), Int[(a + b*Sin[e + f*x])^(m - 1)*(c + d*Sin[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, c, d, e
, f}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && IGtQ[m - 1/2, 0] && LtQ[n, -1] &&  !(ILtQ[m + n, 0] && G
tQ[2*m + n + 1, 0])

Rule 2737

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/Sqrt[(c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[(
a*c*Cos[e + f*x])/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f*x]]), Int[Cos[e + f*x]/(c + d*Sin[e + f*x]),
x], x] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0]

Rule 2667

Int[cos[(e_.) + (f_.)*(x_)]^(p_.)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.), x_Symbol] :> Dist[1/(b^p*f), S
ubst[Int[(a + x)^(m + (p - 1)/2)*(a - x)^((p - 1)/2), x], x, b*Sin[e + f*x]], x] /; FreeQ[{a, b, e, f, m}, x]
&& IntegerQ[(p - 1)/2] && EqQ[a^2 - b^2, 0] && (GeQ[p, -1] ||  !IntegerQ[m + 1/2])

Rule 31

Int[((a_) + (b_.)*(x_))^(-1), x_Symbol] :> Simp[Log[RemoveContent[a + b*x, x]]/b, x] /; FreeQ[{a, b}, x]

Rubi steps

\begin{align*} \int \frac{\cos ^2(e+f x) \sqrt{a+a \sin (e+f x)}}{(c-c \sin (e+f x))^{5/2}} \, dx &=\frac{\int \frac{(a+a \sin (e+f x))^{3/2}}{(c-c \sin (e+f x))^{3/2}} \, dx}{a c}\\ &=\frac{\cos (e+f x) \sqrt{a+a \sin (e+f x)}}{c f (c-c \sin (e+f x))^{3/2}}-\frac{\int \frac{\sqrt{a+a \sin (e+f x)}}{\sqrt{c-c \sin (e+f x)}} \, dx}{c^2}\\ &=\frac{\cos (e+f x) \sqrt{a+a \sin (e+f x)}}{c f (c-c \sin (e+f x))^{3/2}}-\frac{(a \cos (e+f x)) \int \frac{\cos (e+f x)}{c-c \sin (e+f x)} \, dx}{c \sqrt{a+a \sin (e+f x)} \sqrt{c-c \sin (e+f x)}}\\ &=\frac{\cos (e+f x) \sqrt{a+a \sin (e+f x)}}{c f (c-c \sin (e+f x))^{3/2}}+\frac{(a \cos (e+f x)) \operatorname{Subst}\left (\int \frac{1}{c+x} \, dx,x,-c \sin (e+f x)\right )}{c^2 f \sqrt{a+a \sin (e+f x)} \sqrt{c-c \sin (e+f x)}}\\ &=\frac{\cos (e+f x) \sqrt{a+a \sin (e+f x)}}{c f (c-c \sin (e+f x))^{3/2}}+\frac{a \cos (e+f x) \log (1-\sin (e+f x))}{c^2 f \sqrt{a+a \sin (e+f x)} \sqrt{c-c \sin (e+f x)}}\\ \end{align*}

Mathematica [C]  time = 0.837657, size = 104, normalized size = 1.07 \[ \frac{\sec (e+f x) \sqrt{a (\sin (e+f x)+1)} \left (2 \log \left (i-e^{i (e+f x)}\right )+\left (i f x-2 \log \left (i-e^{i (e+f x)}\right )\right ) \sin (e+f x)-i f x+2\right )}{c^2 f \sqrt{c-c \sin (e+f x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[(Cos[e + f*x]^2*Sqrt[a + a*Sin[e + f*x]])/(c - c*Sin[e + f*x])^(5/2),x]

[Out]

(Sec[e + f*x]*Sqrt[a*(1 + Sin[e + f*x])]*(2 - I*f*x + 2*Log[I - E^(I*(e + f*x))] + (I*f*x - 2*Log[I - E^(I*(e
+ f*x))])*Sin[e + f*x]))/(c^2*f*Sqrt[c - c*Sin[e + f*x]])

________________________________________________________________________________________

Maple [B]  time = 0.247, size = 194, normalized size = 2. \begin{align*} -{\frac{\sin \left ( fx+e \right ) \cos \left ( fx+e \right ) - \left ( \cos \left ( fx+e \right ) \right ) ^{2}-2\,\sin \left ( fx+e \right ) -\cos \left ( fx+e \right ) +2}{f \left ( 1-\cos \left ( fx+e \right ) +\sin \left ( fx+e \right ) \right ) } \left ( \sin \left ( fx+e \right ) \ln \left ( 2\, \left ( \cos \left ( fx+e \right ) +1 \right ) ^{-1} \right ) -2\,\sin \left ( fx+e \right ) \ln \left ( -{\frac{-1+\cos \left ( fx+e \right ) +\sin \left ( fx+e \right ) }{\sin \left ( fx+e \right ) }} \right ) -\ln \left ( 2\, \left ( \cos \left ( fx+e \right ) +1 \right ) ^{-1} \right ) +2\,\sin \left ( fx+e \right ) +2\,\ln \left ( -{\frac{-1+\cos \left ( fx+e \right ) +\sin \left ( fx+e \right ) }{\sin \left ( fx+e \right ) }} \right ) \right ) \sqrt{a \left ( 1+\sin \left ( fx+e \right ) \right ) } \left ( -c \left ( -1+\sin \left ( fx+e \right ) \right ) \right ) ^{-{\frac{5}{2}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(f*x+e)^2*(a+a*sin(f*x+e))^(1/2)/(c-c*sin(f*x+e))^(5/2),x)

[Out]

-1/f*(sin(f*x+e)*ln(2/(cos(f*x+e)+1))-2*sin(f*x+e)*ln(-(-1+cos(f*x+e)+sin(f*x+e))/sin(f*x+e))-ln(2/(cos(f*x+e)
+1))+2*sin(f*x+e)+2*ln(-(-1+cos(f*x+e)+sin(f*x+e))/sin(f*x+e)))*(sin(f*x+e)*cos(f*x+e)-cos(f*x+e)^2-2*sin(f*x+
e)-cos(f*x+e)+2)*(a*(1+sin(f*x+e)))^(1/2)/(1-cos(f*x+e)+sin(f*x+e))/(-c*(-1+sin(f*x+e)))^(5/2)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{a \sin \left (f x + e\right ) + a} \cos \left (f x + e\right )^{2}}{{\left (-c \sin \left (f x + e\right ) + c\right )}^{\frac{5}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(f*x+e)^2*(a+a*sin(f*x+e))^(1/2)/(c-c*sin(f*x+e))^(5/2),x, algorithm="maxima")

[Out]

integrate(sqrt(a*sin(f*x + e) + a)*cos(f*x + e)^2/(-c*sin(f*x + e) + c)^(5/2), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (-\frac{\sqrt{a \sin \left (f x + e\right ) + a} \sqrt{-c \sin \left (f x + e\right ) + c} \cos \left (f x + e\right )^{2}}{3 \, c^{3} \cos \left (f x + e\right )^{2} - 4 \, c^{3} -{\left (c^{3} \cos \left (f x + e\right )^{2} - 4 \, c^{3}\right )} \sin \left (f x + e\right )}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(f*x+e)^2*(a+a*sin(f*x+e))^(1/2)/(c-c*sin(f*x+e))^(5/2),x, algorithm="fricas")

[Out]

integral(-sqrt(a*sin(f*x + e) + a)*sqrt(-c*sin(f*x + e) + c)*cos(f*x + e)^2/(3*c^3*cos(f*x + e)^2 - 4*c^3 - (c
^3*cos(f*x + e)^2 - 4*c^3)*sin(f*x + e)), x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(f*x+e)**2*(a+a*sin(f*x+e))**(1/2)/(c-c*sin(f*x+e))**(5/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{a \sin \left (f x + e\right ) + a} \cos \left (f x + e\right )^{2}}{{\left (-c \sin \left (f x + e\right ) + c\right )}^{\frac{5}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(f*x+e)^2*(a+a*sin(f*x+e))^(1/2)/(c-c*sin(f*x+e))^(5/2),x, algorithm="giac")

[Out]

integrate(sqrt(a*sin(f*x + e) + a)*cos(f*x + e)^2/(-c*sin(f*x + e) + c)^(5/2), x)